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Abstract. We study the gathering problem requiring a team of syn-
chronous mobile agents in arbitrary networks. The team consists of k
agents with unique identifiers (IDs), and f of them are weakly Byzantine
agents, which behave arbitrarily except falsifying their IDs. In this paper,
we focus on a strong team, i.e., a team with a few Byzantine agents, and
propose two gathering algorithms, one with non-simultaneous termina-
tion and one with simultaneous termination, in the case of 4f2+9f+4 ≤
k. The second algorithm is faster than the existing algorithm if the largest
IDs among non-Byzantine agents and among all agents are comparable
and all agents awake at the same time.
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1 Introduction

Mobile agents (in short, agents) are software programs that move autonomously
and perform various tasks in a distributed system. A task that collects multiple
agents on the same node is called a gathering. This task has been widely studied
because, by accomplishing this task, agents can exchange information among
them and easily carry out future cooperative behaviors.

In operations of large-scale distributed systems, we cannot avoid facing faults
of agents. Byzantine faults are known to be the worst faults because Byzantine
faults do not make any assumption about the behavior of faulty agents (called
Byzantine agents).

In the literature, gathering algorithms have been considered for environments
with weakly Byzantine agents [4] and strongly Byzantine agents [1, 2]. Weakly
Byzantine agents perform arbitrary behaviors except falsifying their own IDs,
and strongly Byzantine agents perform arbitrary behaviors, including falsifying
their own IDs.

We seek an algorithm that makes a team of agents gather with small time
complexity in synchronous environments with weakly Byzantine agents. We fol-
low the model in [4] in principle. The team consists of k agents with unique
identifiers (IDs), and f of them are weakly Byzantine agents. Every agent moves
in synchronous rounds and cannot leave any information on nodes. The agents
know the upper bound N of the number of nodes and awake at the same time.
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Table 1. Gathering algorithms with weakly Byzantine agents in synchronous environ-
ments. Here, n is the number of nodes, N is the upper bound of n, |Λgood| (resp., |Λall|)
is the length of the largest ID among good (resp., all) agents, X(n) is the number of
rounds required to explore any network composed of at most n nodes.

Input
Startup
delay

Condition of
#Byzantine agents

Simultaneous
termination

Time complexity

[4] n Possible f + 1 ≤ k Possible O(n4 · |Λgood|·X(n))
Algorithm 1 N Impossible 4f2 + 9f + 4 ≤ k Impossible O((f + |Λgood|) ·X(N))
Algorithm 2 N Impossible 4f2 + 9f + 4 ≤ k Possible O((f + |Λall|) ·X(N))

Our contributions: Table 1 shows a comparison between the two proposed
algorithms and the existing fastest algorithm [4]. The algorithm [4] tolerates any
number of weakly Byzantine agents, however not so many agents are subject to
faults in practice. Hence, in this paper, we reduce the time complexity by taking
advantage of a strong team, that is, a team with a few Byzantine agents. We
propose two algorithms, one with non-simultaneous termination and one with
simultaneous termination, that tolerate f weakly Byzantine agents with a strong
team composed of at least 4f2+9f+4 agents. The second algorithm significantly
reduces the time complexity compared to the algorithm [4] if |Λall|= O(|Λgood|)
holds and all agents awake at the same time.

2 Algorithms

Before explaining the proposed algorithms, we introduce the graph exploration
procedure used in them. The exploration procedure, called EXPLO(N), allows
an agent to traverse all nodes of any graph composed of at mostN nodes, starting
from any node of the graph. An implementation of this procedure is based on
universal exploration sequences and is a corollary of the result by Reingold [5].
The number of moves of EXPLO(N) is denoted by XN .

Non-simultaneous termination: First we explain the algorithm with non-
simultaneous termination, which requires the following conditions: (1) every good
agent terminates the algorithm, and (2) when all the good agents terminate an
algorithm, they are on the same node.

The algorithm achieves the gathering by three stages: CollectID,
MakeGroup, and Gather stages. In the CollectID stage, agents collect
IDs of all good agents. In the MakeGroup stage, agents make a reliable group,
which is composed of at least 4f+4 agents. In the Gather stage, all good agents
gather on a single node and achieve the gathering. Due to space limitation, we
explain the overview under the assumption that agents know f .

In the CollectID stage, agents collect IDs of all good agents. To do this,
each agent ai executes a rendezvous algorithm, which repeats waiting (waiting for
XN rounds) and exploration (executing EXPLO(N)) depending on the extended
label [3]. This guarantees that ai meets all good agents in O((log ai.ID) ·XN )
rounds, where ai.ID is the ID of ai. Hence, by recording aj .ID in variable ai.L
when ai meets aj , ai can eventually know IDs of all good agents.
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In the MakeGroup stage, agents make a reliable group composed of at least
4f+4 agents. To do this, agents with small IDs keep waiting, and the other agents
search for the agents with small IDs. More concretely, if f + 1 smallest IDs in
ai.L contains ai.ID, ai keeps waiting during this stage. Otherwise, ai assigns
min(ai.L) to variable ai.target, and searches for the agent with ID ai.target,
say atarget, by executing EXPLO(N). If ai finds atarget, it ends the search and
waits there. If ai does not find atarget even after completing EXPLO(N), it
regards atarget as a Byzantine agent. In this case, ai assigns the second smallest
ID in ai.L to ai.target, and searches again. Agent ai continues this behavior until
it finds the target agent. This behavior guarantees that at least 4f + 4 agents
gather in one node before each agent completes the (f + 1)-th exploration. In
other words, agents can make a reliable group. The ID of the target agent in a
reliable group is used as the group ID. For the Gather stage, a reliable group
is divided into two groups, an exploring group and a waiting group, so that each
of which contains at least 2f + 2 agents.

In the Gather stage, agents achieve the gathering after at least one reliable
group is created. To do this, agents first collect group IDs of all reliable groups.
More concretely, while agents in a waiting group keep waiting, the other agents
(in an exploring group or not in a reliable group) execute EXPLO(N). When
agent finds a reliable group, it records the group ID. After collecting group IDs,
agents move to the node where the waiting group of the smallest group ID stays.

However, there are two issues to implement the above behavior. The first
issue is that agents not in a reliable group cannot instantly know the fact that a
reliable group has been created, and so they do not know when to transition to
the Gather stage. The second issue is that agents do not know the exact value
of f . Our proposed algorithm is designed to solve these problems.

Simultaneous termination: We briefly explain the algorithm with simultane-
ous termination, which requires all the good agents to terminate the algorithm at
the same round. Although the first algorithm allows agents to gather at a single
node, agents may terminate the algorithm at different times. Hence, agents wait
without terminating and estimate the time when all good agents arrive at the
gathering node. Since this time depends on the largest ID among agents (because
of the CollectID stage), the agents make a consensus on the largest ID and
estimate the termination time. At the estimated time, all the agents terminate.
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