Brief Announcement: Leader Election for Arbitrarily Connected Networks in the Presence of Process Crashes and Weak Channel Reliability

Sergio Rajsbaum[†], Michel Raynal^{*,‡}, Karla Vargas[†]

[†]Instituto de Matematicas, UNAM, Mexico ^{*}Univ Rennes IRISA, 35042 Rennes, France [‡]Department of Computing, Polytechnic University, Hong Kong

1 Introduction

In the leader election problem each process p_i has a local variable $leader_i$, and it is required that all the local variables $leader_i$ forever contain the same identity, which is the identity of one of the processes. If processes may crash, the system is fully asynchronous, and the elected leader must be a process that does not crash, leader election cannot be solved [4]. Not only the system must no longer be fully asynchronous, but the leader election problem must be weakened to the *eventual leader election problem*. This problem is denoted Ω in the failure detector parlance [1,2]. Notice that the algorithm must elect a new leader each time the previously elected leader crashes.

ADD channels were introduced in [5], as a realistic partially synchronous model of channels that can lose and reorder messages. Each channel guarantees that some subset of the messages sent on it will be delivered in a timely manner and such messages are not too sparsely distributed in time. More precisely, for each channel there exist two constants K and D, not known to the processes (and not necessarily the same for all channels), such that for every K consecutive messages sent in one direction, at least one is delivered within D time units after it has been sent.

Even though ADD channels seem so weak, it is possible to implement an *eventu*ally perfect failure detector in an arbitrarily connected network of ADD channels [3]. A implementation of $\Diamond P$ using messages of size $O(n \log n)$ in the same model was presented [6]. The goal of this paper is move from $\Diamond P$ to Ω using messages of $O(\log n)$.

This paper shows that it is possible to implement Ω in an arbitrarily connected network of eventual ADD channels where asynchronous processes may fail by crashing using messages of $O(\log n)$. Then, we propose an implementation of Ω in networks with unknown membership whose messages are eventually of size $O(\log n)$ too.

Designing leader election ADD-based algorithms using messages whose size is bounded, is a difficult challenge since while the constants K and D do exist. We found it even more challenging to work under the assumption that some edges might not satisfy any property at all; our algorithm works under the assumption that only edges on an (unknown to the processes) spanning tree are guaranteed to comply with the ADD property.

2 Model of Computation

The system consists of a finite set of processes $\Pi = \{p_1, p_2, ..., p_n\}$. Any number of processes may fail by crashing. A process is *correct* if it does not crash, otherwise, it

is *faulty*. The communication network is represented by a directed graph $G = (\Pi, E)$, where an edge $(p_i, p_j) \in E$ means that there is a unidirectional channel that allows the process p_i to send messages to p_j . Is required the existence of a spanning tree containing all correct processes and the root being the leader, i.e. the correct process with the smallest identity.

A directed channel (p_i, p_j) satisfies the *ADD property* if there are two constants K and D (unknown to the processes such that for every K consecutive messages sent by p_i to p_j , at least one is delivered to p_j within D time units after it has been sent. The other messages from p_i to p_j can be lost or experience arbitrary delays.

initialization —-Code for p_i —-
(1) $leader_i \leftarrow i; hopbound_i[i] \leftarrow n; set timer_i[i, n] to + \infty;$
(2) for each $j \in \{1, \dots, n\} \setminus \{i\}$ and each $x \in \{1, \dots, n\}$
(3) do $timeout_i[j, x] \leftarrow$ any positive integer; set $timer_i[j, x]$ to $timeout_i[j, hb]$;
(4) set $penalty_i[j, x]$ to -1 ; $hopbound_i[j] \leftarrow 0$
(5) end for.
(6) every T time units of $clock_i()$ do
(7) if $(hopbound_i[leader_i] > 1)$
(8) then for each $j \in out_neighbors_i$
do send ALIVE($leader_i$, $hopbound_i[leader_i] - 1$) to p_i end for
(9) end if.
(10) when $ALIVE(\ell, hb \leftarrow n - k)$ such that $\ell \neq i$ is received % from a process in $in_neighbors_i$
(10) when the $2(0, \infty, n, n)$ but the $i > j > i$ is received to home process in convergence n_i (11) if $(\ell \le leader_i)$
(11) If $(e \leq voulder_i)$ (12) then $leader_i \leftarrow l;$
(12) if ([<i>timer</i> _i][<i>leader</i> _i , <i>hb</i>] expired)
then increase the value of $timeout_i[leader_i, hb]$ end if;
$(14) \qquad \text{set } timer_i[leader_i, hb] \text{ to } timeout_i[leader_i, hb];$
$(15) not_expired_i \leftarrow \{x \mid timer_i[leader_i, x] \text{ not expired }\};$
(16) $hopbound_i[leader_i] \leftarrow$
$\max\{x \in not_expired \text{ with smallest non-negative } penalty_i[leader_i, x]\}$
(17) end if.
(18) when $timer_i[leader_i, hb]$ expires and $(leader_i \neq i)$ do
$(19) penalty_i[leader_i, hb] \leftarrow penalty_i[leader_i, hb] + 1;$
$(20) \text{if} \left(\wedge_{1 \leq x \leq n} \left([timer_i[leader_i, x] \text{ expired}) \right) \right)$
(21) then $leader_i \leftarrow i$
(22) else same as lines 15-16
(23) end if.

Algorithm 1: Eventual leader election in the \Diamond ADD model with known membership

3 An Algorithm for Eventual Leader Election in the ◇ADD Model with Unknown Membership

The second algorithm (only described here due space limitations) solves eventual leader election in the \diamond ADD model with unknown membership, which means that, initially, a process knows nothing about the network, it knows only its input/output channels.

Initially p_i communicate its identity to its neighbors. Once its neighbors know about it, p_i no longer send its identity. And the same with other names that p_i learns. For that, p_i keeps a *pending set* for every channel connected to it that helps it to keep track of the information that it needs to send to its neighbors. So initially, p_i adds the pair (new, i) to every pending set.

When process p_i receives an ALIVE() message from p_j , this message can contain information about the leader and the corresponding pending set that p_j saves for p_i . First, p_i processes the information contained in the pending set and then processes the information about the leader. If p_i finds a pair with a name labeled as new and does not know it, it stores the new name in the set $knonw_i$, increases its hopbound value, and adds to every pending set (except to the one belonging to p_j) this information labeled as new. In any case, p_i needs to communicate p_j that it already knows that information, so p_i adds this information to the pending set of p_j but labeled as an acknowledgment.

When p_j receives name labeled as an acknowledgment from p_i , i.e. (ack, name), it stops sending the pair (new, name) to it, so it deletes that pair from p_i 's pending set. Eventually, p_i receives a pending set from p_j not including (new, name), so p_i deletes (ack, name) from p_j 's pending set.

As in Algorithm 1, every process keeps as leader a process with minimum id. This part is similar to Algorithm 1, only ignoring the penalties since we are assuming that all channels are \diamond ADD.

4 Conclusion

The \diamond ADD model is a particularly weak partially synchronous communication model. Assuming first that the correct processes are connected by a spanning tree made up of \diamond ADD channels, this article has presented an algorithm that elects an eventual leader, using messages of only size $O(\log n)$.

References

- 1. Chandra T.D., Hadzilacos V., and Toueg S., The weakest failure detector for solving consensus. *Journal of the ACM*, 43(4):685-722 (1996)
- Chandra T.D. and Toueg S., Unreliable failure detectors for reliable distributed systems. Journal of the ACM, 43(2):225-267 (1996)
- 3. Kumar S. and Welch J.L., Implementing ◊*P* with bounded messages on a network of ADD channels. *Parallel Processing Letters*, Vol. 29(1) 1950002, 12 pages (2019)
- Raynal M., Fault-tolerant message-passing distributed systems: an algorithmic approach. Springer, 492 pages, ISBN 978-3-319-94140-0 (2018)
- Sastry S. and Pike S.M., Eventually perfect failure detectors using ADD channels. 5th Int'l Symposium on Parallel and Distributed Processing and Applications (ISPA'07), Springer LNCS 4742, pp. 483-496 (2007)
- Vargas K. and Rajsbaum S., An eventually perfect failure detector for networks of arbitrary topology connected with ADD channels using time-to-live values. 49th IEEE/IFIP Int'l Conference on Dependable Systems and Networks (DSN'19), IEEE Press, pp. 264-275 (2019)